- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fan, Jean (2)
-
Aihara, Gohta (1)
-
Atta, Lyla (1)
-
Bambah-Mukku, Dhananjay (1)
-
Chen, Mayling (1)
-
Clifton, Kalen (1)
-
Dulac, Catherine (1)
-
Hickey, John W (1)
-
Li, Zhuoyan (1)
-
Miller, Brendan F (1)
-
Miller, Brendan F. (1)
-
Satija, Rahul (1)
-
Zhuang, Xiaowei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
Martelli, Pier Luigi (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martelli, Pier Luigi (Ed.)Abstract MotivationSpatial omics data demand computational analysis but many analysis tools have computational resource requirements that increase with the number of cells analyzed. This presents scalability challenges as researchers use spatial omics technologies to profile millions of cells. ResultsTo enhance the scalability of spatial omics data analysis, we developed a rasterization preprocessing framework called SEraster that aggregates cellular information into spatial pixels. We apply SEraster to both real and simulated spatial omics data prior to spatial variable gene expression analysis to demonstrate that such preprocessing can reduce computational resource requirements while maintaining high performance, including as compared to other down-sampling approaches. We further integrate SEraster with existing analysis tools to characterize cell-type spatial co-enrichment across length scales. Finally, we apply SEraster to enable analysis of a mouse pup spatial omics dataset with over a million cells to identify tissue-level and cell-type-specific spatially variable genes as well as spatially co-enriched cell types that recapitulate expected organ structures. Availability and implementationSEraster is implemented as an R package on GitHub (https://github.com/JEFworks-Lab/SEraster) with additional tutorials at https://JEF.works/SEraster.more » « less
-
Miller, Brendan F.; Bambah-Mukku, Dhananjay; Dulac, Catherine; Zhuang, Xiaowei; Fan, Jean (, Genome Research)Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thousands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell communication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved transcriptomic data. We applied MERINGUE to a variety of spatially resolved transcriptomic data sets including multiplexed error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridization (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our understanding of the interplay between cell state and spatial organization in tissue development and disease.more » « less
An official website of the United States government
